人口贩运是一个普遍的问题,尽管在全球范围内为与之作斗争,但仍坚持不懈。任何年龄,种族,种族,性别,性别认同,性取向,国籍,移民身份,文化背景,宗教,社会经济阶级和教育的个人都可以成为人口贩运的受害者。随着技术的进步和引入自动驾驶汽车(AVS),人口贩子将采用新的方式运输受害者,这可以加速有组织的人口贩运网络的增长,这可以使对执法人员更具挑战性的人口贩运的探测机构。这项研究的目的是为自动驾驶汽车开发基于创新的音频分析的人口贩运检测框架。这项研究的主要贡献是:(i)为AVS定义四个非平凡,可行和现实的人口贩运情景; (ii)创建一个与人口贩运有关的新的,全面的音频数据集,其中五个类别,即哭泣,尖叫,车门爆炸,汽车噪音和对话; (iii)开发一个与人口贩运有关的音频数据分类的深1D卷积神经网络(CNN)体系结构。我们还使用新的音频数据集进行了案例研究,并评估了深1-D CNN的音频分类性能。我们的分析表明,深1-D CNN可以将来自人口贩运受害者的声音与非人口贩运声音的准确性为95%,这证明了我们框架的功效。
translated by 谷歌翻译
疏散计划是灾难管理的关键部分,其目标是将人员搬迁到安全和减少伤亡。每个疏散计划都有两个基本组件:路由和调度。但是,这两个组件与目标的联合优化,例如最大程度地减少平均疏散时间或疏散完成时间,这是一个计算问题上的问题。为了解决它,我们提出了MIP-LNS,这是一种可扩展的优化方法,将启发式搜索与数学优化结合在一起,并可以优化各种目标函数。我们使用来自德克萨斯州休斯敦的哈里斯县的现实世界道路网络和人口数据,并应用MIP-LNS来查找该地区的疏散路线和时间表。我们表明,在给定的时间限制内,我们提出的方法在平均疏散时间,疏散完成时间和解决方案的最佳保证方面找到了比现有方法更好的解决方案。我们在研究区域进行基于代理的疏散模拟,以证明解决方案的功效和鲁棒性。我们表明,即使撤离人员在一定程度上偏离了建议的时间表,我们的规定疏散计划仍然有效。我们还研究了疏散计划如何受到道路故障的影响。我们的结果表明,MIP-LN可以使用有关道路估计截止日期的信息,以成功,方便地撤离更多人,以提出更好的疏散计划。
translated by 谷歌翻译
我们介绍RealityTalk,该系统通过语音驱动的互动虚拟元素来增强实时实时演示。增强演示文稿利用嵌入式视觉效果和动画来吸引和表现力。但是,现有的实时演示工具通常缺乏互动性和即兴创作,同时在视频编辑工具中产生这种效果需要大量的时间和专业知识。RealityTalk使用户能够通过实时语音驱动的交互创建实时增强演示文稿。用户可以通过实时语音和支持方式进行交互提示,移动和操纵图形元素。根据我们对177个现有视频编辑的增强演示文稿的分析,我们提出了一套新颖的互动技术,然后将它们纳入真人秀。我们从主持人的角度评估我们的工具,以证明系统的有效性。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
边缘设备上有限且动态的资源激励我们部署优化的深神经网络,该网络可以调整其子网络以适应不同的资源约束。但是,现有作品通常通过在手工制作的采样空间中搜索不同的网络体系结构来构建子网络,这不仅可以导致低标准的性能,而且可能导致设备上的重新配置开销。在本文中,我们提出了一种新颖的培训算法,动态的实时稀疏子网(着装)。着装通过基于行的非结构化稀疏度从相同的骨干网络采样多个子网络,并与加权损失并联训练这些子网络。着装还利用包括参数重复使用和基于行的细粒抽样在内的策略,以进行有效的存储消耗和有效的机上适应。公共视觉数据集的广泛实验表明,与最先进的子网络相比,着装的准确性明显更高。
translated by 谷歌翻译
语言模型(LM)在全球许多基于语言的应用空间中变得普遍。尽管这些LMS正在改善我们与数字产品的日常互动,但无论是开放式语言还是由这些模型生成的文本仍然揭示了对特定人群的任何偏见,因此仍然存在担忧,从而冒着某种产品的可用性风险。有必要确定这些模型是否具有偏见以改善这些模型的公平性。这一差距激发了我们正在进行的工作,在该工作中,我们通过残疾镜头测量了GPT-3生成的文本的两个方面。
translated by 谷歌翻译
低功率边缘-AI功能对于支持元视野的设备扩展现实(XR)应用至关重要。在这项工作中,我们研究了两个代表性的XR工作负载:(i)手动检测和(ii)眼睛分割,用于硬件设计空间探索。对于这两种应用,我们都会训练深层神经网络,并分析量化和硬件特定瓶颈的影响。通过模拟,我们评估了CPU和两个收缩推理加速器实现。接下来,我们将这些硬件解决方案与先进的技术节点进行比较。评估了将最新的新兴非易失性记忆技术(STT/SOT/VGSOT MRAM)集成到XR-AI推论管道中的影响。我们发现,可以通过在7nm节点的设计中引入非挥发性记忆来实现手部检测(IPS = 40)和眼部分割(IPS = 6)的显着能源益处(IPS = 40)(IPS = 6)。 (推断每秒)。此外,由于MRAM与传统的SRAM相比,由于MRAM的较小形式,我们可以大大减少面积(> = 30%)。
translated by 谷歌翻译
机器学习已经急剧提高,在多模式任务中缩小了人类的准确性差距,例如视觉问题答案(VQA)。但是,尽管人类在不确定的时候可以说“我不知道”(即避免回答问题),但这种能力在多模式研究中被大大忽略了,尽管此问题对VQA的使用很重要,而VQA实际上使用了VQA。设置。在这项工作中,我们为可靠的VQA提出了一个问题制定,我们更喜欢弃权,而不是提供错误的答案。我们首先为多种VQA模型提供了弃戒功能,并分析了它们的覆盖范围,回答的问题的一部分和风险,该部分的错误。为此,我们探索了几种弃权方法。我们发现,尽管最佳性能模型在VQA V2数据集上实现了超过71%的准确性,但通过直接使用模型的SoftMax得分介绍了弃权的选项,限制了它们的少于8%的问题,以达到错误的错误风险(即1%)。这促使我们利用多模式选择功能直接估计预测答案的正确性,我们显示的可以将覆盖率增加,例如,在1%风险下,2.4倍从6.8%到16.3%。尽管分析覆盖范围和风险很重要,但这些指标具有权衡,这使得比较VQA模型具有挑战性。为了解决这个问题,我们还建议对VQA的有效可靠性指标,与弃权相比,将不正确的答案的成本更大。 VQA的这种新问题制定,度量和分析为构建有效和可靠的VQA模型提供了基础,这些模型具有自我意识,并且只有当他们不知道答案时才戒除。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉(CV),自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。即使记录了大量的电子健康记录(EHR)数据,但如果数据收集到小型医院或处理罕见疾病的交易,数据和标签也可能稀缺。在这种情况下,对较大的EHR数据进行预训练可以改善模型性能。在本文中,我们将无监督的预培训应用于异质的多模式EHR数据,以预测患者。为了对这些数据进行建模,我们利用大量的人群图表。我们首先设计基于图形变压器的网络体系结构,旨在处理EHR数据中发生的各种输入特征类型,例如连续,离散和时间序列特征,从而允许更好的多模式数据融合。此外,我们设计基于蒙版的插入方法的预训练方法,以在对不同的最终任务进行微调之前对网络进行预培训。预训练是以一种完全无监督的方式进行的,这为未来具有不同任务和类似方式的大型公共数据集预先培训奠定了基础。我们在两个患者记录的医学数据集(Tadpole和Mimic-III)上测试我们的方法,包括成像和非成像功能以及不同的预测任务。我们发现,我们提出的基于图形的预训练方法有助于在人群水平上对数据进行建模,并进一步改善Mimic的AUC方面的AUC,平均AUC的性能,而Tadpole则为7.64%。
translated by 谷歌翻译
近年来,低资源机器阅读理解(MRC)取得了重大进展,模型在各种语言数据集中获得了显着性能。但是,这些模型都没有为URDU语言定制。这项工作探讨了通过将机器翻译的队伍与来自剑桥O级书籍的Wikipedia文章和Urdu RC工作表组合的人生成的样本组合了机器翻译的小队,探讨了乌尔通题的半自动创建了数据集(UQuad1.0)。 UQuad1.0是一个大型URDU数据集,用于提取机器阅读理解任务,由49K问题答案成对组成,段落和回答格式。在UQuad1.0中,通过众包的原始SquAd1.0和大约4000对的机器翻译产生45000对QA。在本研究中,我们使用了两种类型的MRC型号:基于规则的基线和基于先进的变换器的模型。但是,我们发现后者优于其他人;因此,我们已经决定专注于基于变压器的架构。使用XLMroberta和多语言伯特,我们分别获得0.66和0.63的F1得分。
translated by 谷歌翻译